

Computation Framework’s documentation

Conduct a research activity that implies modelling complex system and/or find optimal parameters in variational methods
could be demanding in terms of time and resources. This is even more evident in the quantum computing realm, in this period of near term devices
we are used to benchmark our methods with classical simulations.

This framework was born when we started our research project published here: link.
We realized soon that the way we organized our simulation to exploit the usage of server/cluster or HPC environment could have
been generalised to several use cases. For those reasons we publish it here so that we could be of help for researchers
in their daily activities.
The large amount of research project are conducted in teams and this implies having more than one environment and also data generated and/or collected by different people, could be a problem without having
a centralized repository.
For this reason we decided to design and build a flexible and light weighted system capable to be used by different people
enabling data collection according to the same rules and structures.
The main research tasks are split into three different pieces:

[image: Alternative text]
The first part enables parallel calculation on ‘computational environment’, the second part is related to the managing of
data, and for this framework we provide facilities to connect the
IBM Cloud cloudant database [https://cloud.ibm.com/catalog/services/cloudant].
The third part consists retrieving information from the database and eventually implement some plot functions
where the user can manipulate data using a simple jupyter notebook or his own python script.

Data calculation

This part is dedicated to the intensive numerical calculation (real quantum devices or simulated on classical devices).
Usually this part is conducted on upgraded computers, HPC clusters or quantum cloud devices. Some
simulated calculation need a huge amount of memory and execution time and with this tool we can keep our results organized and structured avoiding to
lose results or manually move files through different environments.
Moreover, in this configuration the obtained results are available to the whole team that have access to the database and
with the possibility to configure also a dashboard.

Data collection

We decided to collect all the obtained results on a No-SQL json based database because the collection and serialization of
data using the json format is the easiest way on a python class. In this direction we defined a json attribute named final_json
on the constructor function of the metaclass to collect all the metadata coming from the performed run.
We give the user the possibility to save all the results (raw and post
processed) as a new record on the database at the end of the calculation.

Warning

Remember to fill the final_json attribute with only
serializable elements [https://docs.python.org/3/library/json.html] , otherwise the db saving will fail

Data Plot

This last part of the framework component is dedicated to retrieve data from the database and create plot and reports
in order to transform data for a most effective communicative power.
In this framework also this part has been written in python in order to be used in the jupyter environment to
allow an easy and quick implementation of post processing of saved data and provide graphical representation.

Considering that data are produced and stored in near real time and that each plot is built quering the database,
we could say say that each plot is a live report of the obtained results.

Indices and tables

	Index

	Module Index

	Search Page

How to use it

This documentation allow you to create your own class and implement your own methods while keeping all the basic
functionalities as indicated in this
first implementation [https://github.com/quantum-italy-developer/automatic_computation_framework/tree/master/implementation].

Code Description

Let’s provide the code description of the whole framework and implemented examples:

	Execution

	Metaclass

	Plot

Execution

Metaclass

This part of the framework contains the backbone of the computation and plot part.
There have been implemented metaclass of referement for the plot and computation class implementation
tailored for your own case.

Important

Both classes take as input, when instantiated, data coming from a private_config.json, if the config file is missing
then you can feed this information manually

	
class CAF.MetaClass.ComputationClass

	This metaclass contains the backbone of the computation class .
It is composed by 3 different elements:

	init : the constructor function through we collect credential to log on database and IBMQ system

	run : function designated to gather parameters for each run, then run calculation (on local or remote) and then save the results in the ‘final_json’ class attribute – To implement your class –

	save : function designated to save results on database

NB: Instantiating the class will not require any argoument because an automatic feeding has been implemented
using a decorator.

	
abstract run()

	Run function

This function must be implemented in the class you are going to implement

	
save(db_name: str)

	Save function

This function save the obtained results presente on the internal json named “final_json” that is populated
during the perford calculation

	Parameters

	db_name (str) – name of the db created on the cloud instance to collect data

	
class CAF.MetaClass.PlotClass

	This metaclass is designed to collect all the routines to query and show results.
In this metaclass are provided the basic functions to instantiate the connection with database and query on it.
The contructor function will retrieve the db credential and the db name.
THe db_name has to be manually feeded by the user, in order to connect with the correct data source.

	
query(selector_dict: dict, field_list: list)

	Query

This function is designet to automatically query on db data just providing a selector and a field list.

	Parameters

	
	selector_dict (dict) – dictionary containing db query following the cloudant standard

	field_list (list) – list of field to retrieve for the queried elements

Plot

Heisenberg

Index

 C
 | P
 | Q
 | R
 | S

C

 	
 	ComputationClass (class in CAF.MetaClass)

P

 	
 	PlotClass (class in CAF.MetaClass)

Q

 	
 	query() (CAF.MetaClass.PlotClass method)

R

 	
 	run() (CAF.MetaClass.ComputationClass method)

S

 	
 	save() (CAF.MetaClass.ComputationClass method)

 nav.xhtml

 Table of Contents

 		
 Computation Framework’s documentation

_images/high_level_arch.png
Database

(L

XN ®

XN Y

s Jjupyter D
upgraded SR o
computers.

Computational Environment Data visualization Environment

_static/minus.png

_static/plus.png

_static/file.png

